

 $\overline{7}$

If c = 0, then $ax^2 + bx + c = 0$ MUST / MAY / CAN'T have real roots.

(8)

The equation
$$ax^2 + bx + c = 0$$

MUST / MAY / CAN'T have the same number of real roots as
 $ax^2 - bx + c = 0$.

9

If $ax^2 + bx + c = 0$ has two distinct real roots, then we MUST / MAY / CAN'T have $ac < \frac{b^2}{4}$.

(10)

If c > 0, then $ax^2 + bx + c = 0$ MUST / MAY / CAN'T have two distinct real roots.

(11)

The equation $ax^2 + bx + c = 0$ MUST / MAY / CAN'T have the same number of real roots as $cx^2 + bx + a = 0$.

(12)

If $ax^2 + bx + c = 0$ has no real roots, then $-ax^2 - bx - c = 0$ MUST / MAY / CAN'T have two distinct real roots.